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Abstract—The emergence of mobile robotics, particularly in 

the automotive industry, introduces a promising era of enriched 

user experiences and adept handling of complex navigation 

challenges. The realization of these advancements necessitates a 

focused technological effort and the successful execution of 

numerous intricate tasks, particularly in the critical domain of 

Simultaneous Localization and Mapping (SLAM). Various 

Artificial Intelligence (AI) methodologies, such as deep learning 

and Reinforcement Learning (RL), present viable solutions to 

address the challenges in SLAM. This study specifically explores 

the application of RL in the context of SLAM. By enabling the 

agent (the robot) to iteratively interact with and receive 

feedback from its environment, RL facilitates the acquisition of 

navigation and mapping skills, thereby enhancing the robot's 

decision-making capabilities. This approach offers several 

advantages, including improved navigation proficiency, 

increased resilience, reduced dependence on sensor precision, 

and refinement of the decision-making process. The findings of 

this study, which provides an overview of RL's utilization in 

SLAM, reveal significant advancements in the field. The 

investigation also highlights the evolution and innovative 

integration of these techniques. 

Keywords—Simultaneous Localization and Mapping, 

Reinforcement Learning, Path Planning, Loop Closure Detection, 

Active SLAM. 

I. INTRODUCTION 

Mobile robotics involves designing, constructing, 

operating, and utilizing robots to perform tasks in dynamic, 

non-fixed environments. These robots are usually designed to 

be mobile and autonomous, capable of operating without 

direct human control [1]. Autonomous driving vehicles are 

one of the specific applications of mobile robotics, focusing 

on developing vehicles that can navigate and operate on their 

own in real-world environments, such as roads and highways. 

These vehicles use a combination of sensors, cameras, radar, 

Light Detection and Ranging (LiDAR), as well as advanced 

algorithms to perceive their surroundings and make decisions 

about how to navigate safely to their destination [2]. 

Simultaneous Localization and Mapping (SLAM) is a key 

technology in Mobile Robotics and Autonomous Driving 

(MRAD) [3]. SLAM enables a robot to navigate and create a 

map in an unknown environment by continuously observing 

map features to determine its own position and orientation [4, 

5]. Localization enables the robot to determine its position 

within an environment, while mapping involves constructing 

a representation of the environment (the map) as the robot 

explores it [6]. The ability to accurately localize a robot using 

a map of its surroundings is essential for tasks ranging from 

spatial exploration to autonomous driving, as it provides the 

necessary information for predicting obstacle movements and 

determining optimal maneuvers [7, 8]. 

Accurate localization in robotics is a complex task due to 

the inherent noise in sensor measurements. Addressing 

outliers, occlusions, and sensor failures, as well as resolving 

scale differences between the map and robot motion, is 

essential for successful localization [4]. Additionally, 

detecting revisited locations, known as loop closures, 

presents a challenge due to perceptual aliasing and sensor 

limitations. It is crucial to maintain a consistent estimate of 

the robot's pose over time, especially in dynamic 

environments [6, 9]. Real-time performance is also a key 

consideration in ensuring effective robot navigation and 

localization [10]. 

Mapping presents several challenges that require attention 

to ensure accuracy and reliability. One such challenge is 

aligning sensor measurements with map features, which 

demands careful consideration and precise alignment [3, 11]. 

Furthermore, extracting meaningful features from sensor 

data, such as point clouds and images, is essential for 

constructing an accurate map [12]. It is also crucial to 

accurately estimate vehicle motion during mapping and to 

identify revisited locations to close loops in the map [13]. 

Choosing an appropriate map representation, whether it's 2D 

grids, 3D point clouds, or another format tailored to specific 

mapping needs, is another key consideration. Finally, 

maintaining map consistency as new data is incorporated is 

important for preserving its accuracy and reliability over time 

[6]. 

These challenges drive research and innovation in SLAM 

algorithms, aiming to improve accuracy, robustness, and 

efficiency. Artificial Intelligence (AI) algorithms are integral 

to SLAM, as they enable robots to navigate and map their 
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environment in real-time. Specifically, Reinforcement 

Learning (RL) offers promising opportunities for improving 

exploration, localization, and map building in SLAM 

applications [14]. The integration of RL in the context of 

MRAD aims to offer a systematic approach for robots or 

vehicles to acquire the skills needed for navigating 

environments and making informed decisions using sensor 

data [15, 16]. Therefore, this study explores the practical uses 

of RL within the context of SLAM. The key contributions are 

detailed as follows: 

• The concepts of SLAM were meticulously 

categorized into two distinct parts: passive and 

`active. This nuanced classification enhances the 

analysis of SLAM  approaches in studies, offering a 

clearer framework for evaluating and comparing 

different methodologies. 

• The sources of data utilized for input into the SLAM 

algorithm have been examined. 

• RL in SLAM is divided into four main categories: 

path planning, loop closure detection, environment 

exploration, obstacle detection, and Active SLAM. 

This classification enables researchers to explore the 

various applications of RL in SLAM and stimulates 

the development of new ideas for improvement. 

The rest of the paper is organized as follows: In Section 

II, types of SLAM approaches are introduced. Section III 

describes the modalities used for capturing information about 

the surrounding environment. Section IV explains RL and its 

operational principles. Section V focuses on reviewing and 

categorizing studies that have utilized RL in the context of 

SLAM. Section VI outlines the challenges in applying RL to 

SLAM. Finally, Section VII and VIII conclude the paper and 

depict future directions. 

II. SIMULTANEOUS LOCALIZATION AND MAPPING 

The SLAM technology was first introduced at a 

conference in San Francisco in 1986. It combines map 

recognition and initialization to achieve simultaneous 

positioning and map creation . SLAM is a collection of 

approaches utilized by robots to autonomously determine 

their location and map the surrounding environment as they 

traverse through it. The concept of SLAM can be further 

categorized into two main components: (1) localization, 

which involves estimating the robot's position in relation to 

the map, and (2) mapping, which involves reconstructing the 

environment using visual, visual–inertial, and laser sensors 

mounted on the robot . In modern SLAM techniques, a 

graphical approach is commonly adopted, specifically a 

bipartite graph where nodes represent either the robot or 

landmark poses, and edges represent measurements between 

poses or poses and landmarks. Imagine a robot characterized 

by a state vector 𝑥 ∈ 𝑅2 that defines its position and 

orientation (pose). The primary aim of the SLAM issue is to 

determine the optimal state vector 𝑥∗, minimizing the 

measurement error 𝑒𝑖(𝑥) weighted by the covariance matrix 

𝛺𝑖 ∈ 𝑅𝑙𝑥𝑙 , which accounts for the uncertainty in pose 

measurements, with l representing the state vector's 

dimension, as illustrated in (1). 

𝑥∗ = 𝑎𝑟𝑔⁡𝑚𝑖𝑛
𝑥

∑𝑒𝑡
𝑇(𝑥)𝛺𝑡𝑒𝑡(𝑥)

𝑡

 (1) 

There are two primary approaches to SLAM: Active 

SLAM and passive SLAM [20], which are discussed in the 

following. 

A. Passive SLAM approach 

Passive SLAM systems do not involve navigating a robot 

to explore unfamiliar environments. Instead, they rely on 

predetermined routes or manual guidance and do not actively 

adapt to changes in the environment. Passive SLAM is 

particularly suitable for scenarios where precise robot motion 

is not critical, focusing instead on effective mapping and 

localization [21]. This approach facilitates more predictable 

and controlled movement, which can be advantageous in 

specific applications. However, it also implies that the robot 

may lack the ability to autonomously adjust to unforeseen 

changes in its environment without additional intervention 

[17]. Passive SLAM separates the estimation of robot motion 

from map estimation. Manual control or adherence to 

predetermined waypoints is characteristic of the robot's 

operation [4]. In passive SLAM, Particle Filters (PF) are 

commonly used to estimate robot poses and build maps. PF is 

a probabilistic method that represents the posterior 

distribution using a set of particles (samples), where each 

particle represents a potential robot pose and map hypothesis 

[22]. 

B. Active SLAM approach 

Active SLAM involves surveying the environment using 

sensors that are in motion, while simultaneously estimating 

the status of these sensors and constructing a map. Active 

SLAM setups use sensor readings as input and generate real-

time decisions or actions to influence future measurements 

[23, 24]. Typically, it involves a three-part process [25]: 

1. The recognition of all potential locations for 

exploration (ideally infinite), 

2. The calculation of the efficacy or benefit derived 

from the actions that would transition the robot 

from its present coordinates to each of those 

locations, 

3. The choice and implementation of the most 

advantageous course of action. 

Active SLAM includes modules for planning waypoints 

and generating trajectories. It uses methods from information 

theory, optimal control theory, and RL to actively steer the 

robot towards its destination [4]. We discussed this approach 

in Section V and explored the RL application in Active 

SLAM. 

III. DATA SOURCE 

SLAM in autonomous driving typically involves 

integrating data from multiple sensors to create a 

comprehensive perception of the surroundings [26, 27]. 

These sensors include LiDAR, camera, Global Navigation 

Satellite System / Inertial Navigation System (GNSS/INS), 

Inertial Measurement Unit (IMU), wheel odometry, and 
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radar. The sensor measurements are combined to provide a 

detailed and accurate understanding of the environment [22]. 

Furthermore, control commands from the vehicle's 

actuators such as steering, throttle, and brakes affect the 

robot's movement. RL techniques can optimize these control 

maneuvers to improve SLAM performance [4, 22]. SLAM 

algorithms usually start with an initial estimate of the robot's 

pose, derived from sources like GNSS or wheel odometry 

[28]. RL approaches can refine this pose estimation 

throughout the SLAM process, enhancing accuracy and 

reliability [29].  

LiDAR: LiDAR, a remote sensing technology, uses laser 

light to measure distances and create detailed 3D maps of 

environments [30]. By emitting laser beams and calculating 

the time it takes for them to reflect off objects, LiDAR 

generates accurate point cloud data. This data is instrumental 

in creating comprehensive maps, identifying obstacles, and 

ensuring collision-free paths [31]. Additionally, LiDAR 

enhances precise localization by matching current scans with 

previously mapped features. LiDAR scans are thus pivotal for 

both mapping and obstacle detection, providing critical 

support for autonomous navigation systems [32].  

Cameras: Cameras capture images of the surroundings, 

extracting visual features such as key points and edges to aid 

in robot localization and map construction [33]. These images 

are crucial for visual odometry and feature extraction, 

enabling the estimation of motion by tracking features across 

consecutive frames. Additionally, cameras help identify 

previously visited locations and contribute to the creation of 

detailed 3D maps [34]. 

GNSS/INS: GNSS offers global positioning information 

via satellite signals, providing data on latitude, longitude, and 

altitude. In contrast, INS utilizes accelerometers and 

gyroscopes to estimate position and orientation by measuring 

accelerations and angular rates [22]. GNSS delivers an initial 

position estimate, while INS ensures continuous tracking and 

compensates for GNSS signal outages, maintaining accurate 

navigation even in challenging conditions [35]. 

IMU: IMUs measure both accelerations and angular rates 

by combining accelerometers and gyroscopes to capture 

linear acceleration and angular velocity. IMUs provide short-

term motion estimates, and their data is integrated with other 

sensors, such as LiDAR and cameras, to enhance the 

robustness of SLAM systems [36]. 

Radar: Radar sensors identify objects using radio waves, 

making them particularly valuable for obstacle detection in 

challenging weather conditions. In SLAM systems, radar 

sensors are enhancing accuracy, especially under poor 

lighting or occlusions [37]. The number of radar sensors used 

in a SLAM system varies depending on the application, 

requirements, and desired accuracy [38]. Some systems 

utilize a single radar sensor for both motion estimation and 

environmental mapping. This approach is particularly 

beneficial in low-light conditions or adverse weather 

conditions, where other sensors such as cameras or LiDAR 

may have limitations. Advanced SLAM systems may use 

multiple radar sensors to improve robustness against sensor 

failures and cover a full 360-degree field of view [39]. 

Combining data from multiple radars enhances accuracy and  

reduces blind spots [40].  Radar sensors are often integrated 

with other sensors to provide complementary information 

[41]: 

• LiDAR: Offers long-range detection and high-

resolution mapping. 

• Cameras: Radar-camera fusion helps handle 

challenging lighting conditions. 

• IMU: Improves motion estimation. 

Ongoing research is focused on finding optimal 

configurations for radar-based SLAM, balancing factors such 

as cost, power consumption, and sensor placement [42]. 

Wheel odometry: Wheel odometry is a fundamental 

localization technique that uses wheel encoders to measure 

the rotation of a robot’s wheels, allowing it to estimate 

incremental movement in terms of distance and direction 

[43]. This method is computationally inexpensive and widely 

available, providing continuous pose updates as the robot 

moves [44]. Encoders track the distance traveled, offering 

incremental pose updates, but they can accumulate errors 

over time due to factors like wheel slippage and uneven 

terrain. Encoder readings are also subject to noise, which can 

impact accuracy [45]. In SLAM systems, wheel odometry is 

commonly used as one of the sensor inputs [43]. RL 

algorithms can learn to integrate wheel odometry information 

for pose estimation. In RL-based SLAM, agents are trained to 

fuse wheel odometry data with other sensor modalities, such 

as LiDAR, cameras, and IMUs, to enhance overall system 

robustness and accuracy [26]. 

IV. REINFORCEMENT LEARNING 

To effectively analyze data and develop intelligent 

automated applications, a solid understanding of RL is crucial 

[46]. In RL, an agent learns through interactions with its 

environment and receiving rewards [47]. The agent explores 

various actions to determine which yield the highest rewards 

over time. Given that actions can have lasting impacts, the 

return value R, defined by the reward function, is computed 

by summing discounted future rewards across episodes, as 

shown in (2) where γ denotes the discount factor, and r(st,at) 
represents the reward for action at in state st. 

R⁡=⁡∑γtr(st,at)

T

t=0

  (2) 

Each state is assigned a state value 𝑉(𝑠), which represents 

the expected return an agent can obtain by selecting actions. 

Equation (3) illustrates how  𝑉(𝑠) is computed. 

𝑉(𝑠) = 𝐸[𝑅 ∨ 𝑠0 = 𝑠]⁡or⁡  
𝑉(𝑠) = 𝐸[𝑟(𝑠) + 𝛾𝑉(𝑠next )] 

(3) 

The expectation symbol 𝔼 represents the value of a state 

as the expected return while following a specific policy. The 

value of a state, denoted as 𝑟(𝑠), is the total expected sum of 

rewards achievable in that state [48]. Additionally, each 

action within a state has an action value 𝑄(𝑠, 𝑎) determined 

by the Bellman equation (4) [49]. 
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𝑄(𝑠, 𝑎) = 𝐸[𝑅 ∨ 𝑠0 = 𝑠, 𝑎0 = 𝑎] or  

𝑄(𝑠, 𝑎) = 𝐸[𝑟(𝑠, 𝑎) + 𝛾𝑄(𝑠next , 𝑎next )] 
(4) 

The state-action value, or Q-value, is the expected return 

of taking a specific action 𝑎0 in a state 𝑠0 and then following 

the policy throughout the episode. The relationship between 

state value and Q-value can be described by (5). 

𝑉(𝑠) = ∑𝜋(𝑎 ∨ 𝑠)𝑄(𝑠, 𝑎)

𝑎∈𝐴

 (5) 

Given a policy 𝜋 that selects action 𝑎 in state 𝑠, a Q-table 

can be constructed for a Markov Decision Problem (MDP) 

where all states and actions are known and limited. In this 

process, the agent takes actions and updates the Q-value in 

the Q-table based on the return received from the 

environment. The Q-value is updated using the (6), Where the 

updated 𝑄 value, denoted as 𝑄′, is calculated using a learning 

rate represented by 𝛼 [48].  

𝑄′(𝑠𝑡 , 𝑎𝑡) = 𝑄(𝑠𝑡 , 𝑎𝑡) + 
𝛼([𝑟𝑡 + 𝛾𝑄𝑚𝑎𝑥(𝑠𝑡+1, 𝑎𝑡+1)] − [𝑄(𝑠𝑡 , 𝑎𝑡)]) 
 

(6) 

Fig. 1 illustrates an agent that learns from its environment 

using a RL algorithm. The algorithm updates the policy based 

on the actions taken, with the environment providing 

feedback in the form of rewards and the next state. This 

information is then used by the RL algorithm to improve the 

selection of actions. 

Value-based and policy-based methods are two primary 

approaches used in RL to train agents to solve decision-

making problems. In practice, choosing between value-based 

and policy-based methods depends on the specifics of the 

problem, such as the nature of the state and action spaces, 

stability concerns, and desired convergence properties [50]. 

A. Value-Based Methods 

Value-based methods focus on estimating the value 

function, which represents the expected return or reward that 

an agent can achieve from a given state (or state-action pair) 

while following a particular policy. The primary goal is to 

find an optimal value function that can be used to derive an 

optimal policy [51]. Common value-based methods include: 

• Q-Learning: This algorithm aims to learn the action-

value function (Q-function), which estimates the 

expected return of taking an action in a specific state 

and following the best policy thereafter. Once the Q-

function is learned, the agent can act by selecting 

actions that maximize this value [52]. 

• Deep Q-Networks (DQN): An extension of Q-

learning that uses deep neural networks to 

approximate the Q-function, making it feasible to 

scale Q-learning to environments with high-

dimensional state spaces [53]. 

• SARSA: State-Action-Reward-State-Action 

(SARSA) updates the Q-values based on the action 

taken by the agent, ensuring that the learned policy 

reflects the actions taken during training. SARSA 

represents the sequence of events used to update the 

Q-values. In each step, after the agent takes an action 

and receives a reward, SARSA updates its Q-value 

estimates by considering the next state and the next 

action that the policy would take. [54]. 

B. Policy-Based Methods 

Policy-based methods focus on learning a policy directly. The 

policy can be either deterministic or stochastic, and it maps 

states (or observations) directly to actions, without 

necessarily using a value function to do so. In policy-based 

methods, the objective is typically to optimize the policy itself 

to maximize some measure of cumulative reward [50]. Key 

policy-based methods include: 

Policy Gradient Methods: These methods specifically use 

gradient ascent to optimize the policy. The idea is to compute 

the gradient of the expected return with respect to the policy 

parameters and use this gradient to update the policy in a 

direction that improves performance [55]. 

• REINFORCE: This is the foundational policy 

gradient algorithm proposed by Williams (1992). It 

uses a Monte Carlo estimation of the policy gradient 

and is simple but often suffers from high variance, 

making convergence slower in some scenarios. 

REINFORCE directly optimizes the expected return 

of the policy by adjusting the weights of the neural 

network using sampled trajectories [56]. 

• Trust Region Policy Optimization (TRPO): TRPO 

algorithm enhances the foundational policy gradient 

method by incorporating a trust region constraint. 

This constraint is crucial as it ensures that the newly 

updated policy does not significantly diverge from 

the existing policy, a divergence quantified by the 

Kullback-Leibler (KL) divergence metric. By 

maintaining this constraint, TRPO stabilizes the 

training process. However, this stability comes at the 

expense of increased computational complexity 

[57]. TRPO guarantees incremental policy updates, 

thereby enhancing both stability and performance. It 

has been effectively applied in SLAM for making 

robust decisions in dynamic environments [58]. 

• Proximal Policy Optimization (PPO): PPO is a 

refinement of TRPO, developed to address its 

computational inefficiencies. It replaces the 

Fig. 1.  Reinforcement Learning 
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complex trust region constraint with a simpler 

clipping mechanism in the surrogate loss function, 

which limits large policy updates. PPO is 

computationally efficient, easier to implement, and 

performs well across a wide range of tasks, making 

it one of the most popular policy gradient algorithms 

[59]. It has been applied to SLAM for efficient 

exploration and mapping [55]. 

• Actor-Critic Models: Actor-Critic Models refine the 

learning framework by integrating the advantages of 

both value-based and policy-based methods. The 

Actor component suggests actions based on current 

policy, while the Critic evaluates these actions by 

estimating the value function, providing a feedback 

loop that continually refines both policy and action 

value estimations [60]. This dual approach enables 

efficient learning and convergence, facilitating 

quick adaptation to changes in the environment, 

which is critical for real-time autonomous 

navigation and mapping [61]. 

C. Deep Reinforcement Learning 

Deep Reinforcement Learning (DRL) is a ML approach 

that combines RL with deep neural networks [62]. It differs 

from traditional methods by learning feature representations 

directly from raw data, such as images and sensor readings, 

rather than relying on handcrafted features [63]. This 

approach has shown great promise in solving complex 

decision-making problems and has been applied in various 

fields such as robotics, gaming, and autonomous systems [48, 

64]. 

Value-based DRL methods, such as DQN and their 

extensions, have proven effective in addressing decision-

making problems in discrete and low-dimensional action 

spaces. However, these methods face significant limitations 

when applied to tasks that require navigating continuous, 

high-dimensional action spaces. Active SLAM, which 

involves intricate path planning and precise control, 

exemplifies such challenges [55]. To overcome these 

limitations, researchers have increasingly turned to Policy 

Gradient Methods and Actor-Critic Models. These alternative 

approaches offer distinct advantages, enabling robots to 

autonomously navigate and map their environments while 

effectively handling the complexities of high-dimensional 

action spaces. This paradigm shift underscores the growing 

role of advanced RL techniques in addressing the 

multifaceted demands of active SLAM tasks [48]. 

D. RL-based SLAM applications 

RL has significantly impacted SLAM in practical robotics 

applications, particularly in autonomous vehicles, drones, and 

robotics. Traditionally, SLAM faced challenges in dealing 

with complex and dynamic environments where sensor noise, 

data association, and computational constraints could hinder 

performance. 

Robotics: RL-based SLAM enables robots to 

autonomously navigate and map complex environments by 

learning optimal navigation strategies through trial and error. 

This method enhances robots' abilities to make real-time 

decisions and adapt to dynamic conditions in unfamiliar 

indoor settings while avoiding obstacles [48]. Traditional 

systems lack independent learning capabilities, but Lee et al. 

[65] introduced an innovative end-to-end approach using 

DRL for autonomous navigation in uncharted environments. 

They developed two deep Q-learning agents, the DQN and 

the double DQN, which allow robots to independently learn 

skills for collision avoidance and navigation. The process 

begins with target object detection using a deep neural 

network model, followed by navigation guidance using deep 

Q-learning algorithms. Moreover, recent research focused on 

improving SLAM for mobile robots in complex environments 

using advanced methodologies. Wong et al. [66] developed a 

multi-sensor fusion approach using DRL and Multi-Model 

Adaptive Estimation (MMAE), enhancing the localization 

precision and stability of robots in challenging conditions. Su 

et al. [67] presented Adaptive SLAM Fusion Degradation 

(ASLAM-FD), a framework combining adaptive multi-

sensor fusion with degradation detection and DRL to 

maintain SLAM accuracy in dynamic environments. Liu et al. 

[68] created snake-like robots using SLAM and DRL for 

autonomous navigation and obstacle avoidance in hard-to-

access areas. Their innovations, featuring lightweight 

structures with 2D LiDAR and IMU, significantly improved 

path planning and reduced collision rates compared to 

traditional methods. 

Autonomous Vehicles: RL methods have become essential 

in addressing real-time SLAM tasks for autonomous cars, 

particularly self-driving vehicles operating in dynamic 

environments such as urban streets. These vehicles utilize RL 

to handle decision-making processes, including lane-keeping 

[69], obstacle avoidance [70], and route planning [71], while 

concurrently constructing and updating maps of their 

surroundings. 

RL excels in such applications due to its ability to handle 

high-dimensional sensory data (e.g., LiDAR, cameras) and 

learn optimal control policies through interaction with the 

environment. For example, RL enables autonomous cars to 

adapt to dynamic traffic conditions, manage sensor noise, and 

make split-second decisions to ensure safety and efficiency 

[72]. Advanced RL techniques, such as Actor-Critic models 

and PPO, enhance these capabilities by improving stability 

and convergence during training. These methods allow the 

vehicles to navigate effectively in complex scenarios, such as 

unstructured roads, crowded intersections, and multi-agent 

environments, where traditional SLAM approaches might 

struggle [73].  

Drones: RL is particularly impactful for drones due to 

their reliance on SLAM in GPS-denied environments. For 

example, RL allows drones to perform high-speed racing, 

where they must process rapid sensor inputs and dynamically 

adjust trajectories. Experiments demonstrate that RL-based 

controllers achieve better performance under real-world 
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conditions compared to classical optimal control methods, 

especially when unmodeled dynamics or disturbances are 

present [72, 73]. 

V. CLASSIFICATION OF EXISTING METHODS 

RL has many applications within SLAM, an intersection 

rich with research endeavors. This study reviews the diverse 

applications of RL within SLAM, drawing upon an array of 

articles for insights and analysis. These applications span 

various domains, including path planning, loop closure 

detection, and Active SLAM, as delineated in Fig. 2, 

underscoring the multifaceted utility of RL techniques in 

advancing SLAM methodologies. 

A. Path Planning 

Robot path planning technology, pivotal in robotics 

research, optimizes criteria such as minimizing work costs 

and finding the shortest route, ensuring efficient navigation 

while avoiding obstacles [74]. Path planning methods can 

generally be categorized into traditional and AI approaches. 

When considering environmental information, these methods 

can be further classified into global planning with known 

environmental data and local planning with unknown 

environmental information [75]. 

Wang [76] developed a visual SLAM system utilizing the 

ORB-SLAM3 framework. The system's primary function 

involves the generation of a dense point cloud map. 

Subsequently, this dense point cloud map from the visual 

SLAM system is converted into an octomap, followed by a 

projection transformation to the grid map. The next stage 

involves the development of a path planning algorithm rooted 

in RL. Experimental comparisons were conducted among the 

Q-learning algorithm, the DQN algorithm, and the SARSA 

algorithm. The outcomes showed that the DQN algorithm 

exhibits the swiftest convergence rate and superior 

performance, particularly in intricate environments 

characterized by high dimensions. 

Nam et al. [29] introduced a novel framework for the 

navigation of mobile robots, integrating two established 

approaches (SLAM and DRL), to improve operational 

efficiency. The framework leverages SLAM to construct 

maps and pinpoint the robot's coordinates, while employing 

an Ant Colony Optimization (ACO) algorithm to formulate a 

predetermined route. In scenarios characterized by varying 

obstacles within the environment, the framework adopts 

DRL-based techniques for localized path planning. 

Furthermore, the suggested framework conducts a 

comparative analysis and assessment of the efficacy of three 

distinct DRL-based navigation algorithms: Deep Generative 

Network (DGN), Twin Delayed Deep Deterministic Policy 

Gradient (TD3), and Proximal Policy Optimization (PPO). 

a) Environment Exploration: 

The robot exploration model integrates various 

exploration methods and technologies, empowering robots to 

autonomously navigate, map, and explore unfamiliar 

environments efficiently. It leverages advancements in 

robotics, AI, and sensor technology to seamlessly fulfill these 

objectives [77]. 

Chen et al. [75] introduced a DRL-based robot 

exploration model designed for navigating unknown 

environments without any collisions. This innovative 

approach integrates SLAM technology and a DRL dual-mode 

structure to address local-minimum issues. After 30 training 

rounds, the model successfully achieved zero collisions and 

minimized repeated exploration. It surpasses existing 

methods for exploring unknown environments by a margin of 

less than 5%. 

Li et al. [78] examined the concept of automatic 

exploration within unfamiliar environments through the 

application of DRL alongside a graph-based SLAM 

technique known as Karto SLAM. The proposed framework 

incorporates decision-making, planning, and mapping 

components that make use of a deep neural network to acquire 

knowledge pertaining to exploration strategies. 

b. Obstacle Detection: 

The obstacle detection model involves the development of 

algorithms and technologies to enable vehicles to detect 

obstacles in their surroundings accurately and in real time to 

ensure safe navigation and collision avoidance [79]. 

Wen et al. [80] used a fully convolutional residual 

networks method to identify road obstacles. The dueling 

DQN algorithm is also used in designing the robot's path. A 

two-dimensional map of the route is created by FastSLAM.  

According to Nam et al. study in [81], SLAM algorithms 

are effective for mapping in the environment and DRL 

Fig. 2.  Classification of RL applications in SLAM. 
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algorithms can find dynamic obstacles well, but SLAM 

algorithms and DRL algorithms alone do not perform 

perfectly. In this method, SLAM algorithms combine data 

from several sensors, including LiDAR, to make a map of the 

environment. The ACO algorithm is used for planning to find 

the shortest optimal global path. DRL algorithms help the 

robot in planning the local path. In this way, the robot can 

make decisions based on its current situation and goal. 

Fayjie et al. [82] used DRL for autonomous navigation 

and obstacle avoidance in self-driving cars. This study uses 

camera and laser sensor data and a trained neural network for 

driving. The DQN approach has also been implemented for 

autonomous driving simulation tests. 

B. Loop Closure Detection  

Loop closure, a crucial process in robotics and 

autonomous vehicles, addresses inaccuracies in sensor 

measurements [83]. It also tackles various issues affecting 

reliability, such as drifting, acceleration changes, and weather 

conditions. By detecting when a vehicle revisits a previously 

visited location, loop closure helps to correct any 

accumulated errors in the system's map or position estimate 

[84]. This process is essential for ensuring the accuracy and 

credibility of the vehicle's navigation system and overall 

performance [85]. 

Iqbal et al. [86] investigated loop closure detection in 

simulated environments using a DRL approach. In this study, 

training was improved with entropy maximization for batch 

size selection. Furthermore, Bag-of-Words (BOW) method is 

used for loop closure and localization in maps, which 

represent an image using locally created features. DRL trains 

the probabilistic policy for loop closure detection. 

Furthermore, Convolutional Neural Networks (CNN) and 

region-based features are used for landmark proposal and 

matching. 

In another study, Iqbal [87] presented two approaches to 

solve the problem of loop closure detection. The first 

approach uses statistical and clustering methods. In the 

second approach using DRL, loop closure detection is 

considered as a reward-driven optimization process. The 

proposed structure is implemented in a simulated grid 

environment. After generating the data, the learning process 

is done for the agent and the agent learns to detect the loop 

closure in variant environments. 

C. RL in Active SLAM 

As mentioned in Section 2, Active SLAM is a method 

used by robots and autonomous systems to actively explore 

their surroundings. This approach allows the system to 

continuously enhance its understanding of the environment 

while also updating its position in real-time [88]. By making 

informed decisions on where to move next, the robot can 

effectively gather the most valuable data for mapping and 

localization purposes. This dynamic technique enables the 

system to adapt to changing environments and efficiently 

navigate through unknown areas [89, 90]. 

Fang et al. [91] harnessesed the power of MuZero to 

improve agents' planning abilities for joint Active SLAM and 

navigation tasks. These tasks involve navigating through 

unfamiliar environments while creating a map and 

determining the agent's location simultaneously. The paper 

introduces the SLAMuZero framework, which combines 

SLAM with the tree-search-based MuZero. SLAMuZero 

employs an explicit encoder-decoder architecture for 

mapping, along with a prediction function to assess policy 

and value using the generated map. The integration of 

SLAMuZero leads to a substantial decrease in training time. 

Placed et al. [88] utilized deep Q-learning architecture 

with laser measurements for navigation and focused on 

reducing uncertainty in robot localization and map 

representation. Trained agents reduce uncertainty, transfer 

knowledge to new maps and learn to navigate and explore in 

simulations. 

Pei et al. [92] introduced Active relative localization for 

multi-agent SLAMs. The task allocation algorithm is based 

on DRL and utilizes a Multi-Agent System DQN (MAS-

DQN) to enhance collaboration efficiency in SLAM.  

Alcalde et al. [93] used two agents namely completeness-

based and uncertainty-based agents. According to the results, 

these agents completed maps without collisions. The 

uncertainty-based agent generated longer paths but better 

maps, and the Active SLAM DRL solution improved 

performance in complex environments. 

Table 1 offers a comparative examination of the 

scrutinized research endeavors utilizing RL in the context of 

SLAM applications. It delves into the simulation 

environment, deep learning techniques, SLAM 

methodologies, and RL algorithms employed in these studies. 

 

TABLE 1: COMPARISON OF REVIEWED STUDIES. 

 Ref. Year 
Simulation 

environment 

Deep 

learning 

method 

SLAM 

method 
RL algorithm Advantage Disadvantage 

P
a

th
 p

la
n

n
in

g
 

 

[76] 2024 Simple maze 
Deep neural 

network 
ORBSLAM3 

- Q-learning 
- DQN 

- SARSA 

• Effective map 

conversion 

• Contribution to 

autonomous 
navigation 

• Dependence on 

sensor quality 

• Computational 

demands 

[29] 2023 

- Gazebo 

- ROS 
- TurtleBot 

Deep neural 

network 
SLAM-MCL 

- Q-learning 

- SARSA 
- actor-critic 

• Comprehensive 

framework 

• Extensive 

experimental 
validation using 

various 

• Limited 

generalization 

• Potential 

overfitting 
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simulated 

environments 

E
n

vi
ro

n
m

en
t 

ex
p

lo
ra

ti
o

n
 

 

[75] 2024 
- Gazebo 

- ROS 
CNN - DQN 

• Effective 

Training 
Strategy 

• Addressing 

Real-World 
Challenges 

• Slower 

Exploration 

Speed 

• No Real-World 

Implementation 

[78] 2019 ROS CNN Karto SLAM DQN 

• Modular 

Framework 

• Efficient 

Exploration 
Strategy 

• Generalization 

Performance 

• Complexity of 

Implementation 

• High 

Computational 
Burden 

O
b

st
a

cl
e 

d
et

ec
ti

o
n

 

 

[81] 2023 

- ROS2 

- DDS 

Communicatio
n 

 - Gazebo 

CNN SLAM-MCL 

- DQN 

- PPO 
- TD3 

• Adaptability to 

Dynamic 

Environments 

• Exploration of 

Multiple DRL 

Algorithms 

• Complexity in 

Implementation 

• Restricted 

Problem Scope 

[80] 2020 Gazebo 

Fully 

convolutional 
residual 

network 

FastSLAM Dueling DQN 

• Scalable Action 

Space 

• Improved 

Learning 

Efficiency 

• High 

Computational 

Complexity 

• Sensor 

Dependency 

[82] 2018 
Unity Game 

Engine 
CNN - DQN 

• Sensor Fusion 

• Efficient 

Simulation 
Environment 

• Improved 

Training 
Stability 

• Simulation-

Limited 

Validation 

• Simplistic 

Action Set 

• Limited 

Scalability 

L
o

o
p

 c
lo

su
re

 d
et

ec
ti

o
n

 

 

[86] 2022 Turtlebot CNN VSLAM 
Markov Decision 

Process 

• Real-World 

Application 

• Improved 

Feature 
Utilization 

• Dependence on 

Prior Knowledge 

• Computational 

Demands 

• Hardware-

Dependent 
Constraints 

[87] 2019 

- Zoox 
- Autonomous 

driving 

platform 

CNN VSLAM 
Markov decision 

process 

• Robust Data 

Association 
Method 

• Scalable to 

Unknown 

Environments 

• Dependency on 

Accurate Depth 

Estimation 

• Computational 

Overheads 

A
ct

iv
e 

S
L

A
M

 

 

[91] 2024 Habitat 
Encoder-

Decoder 
- - 

• Efficiency in 

Training 

• Improved 

Performance 

 

• High Initial 

Complexity 

• Unclear 

Scalability 

• Potential for 

Overfitting 

[88] 2020 Gazebo 
Deep Neural 

Network 
- 

- DQN 

- DDQN 
- D3QN 

• Strong 

generalization 

capabilities 

• Complex 

Simulation 
Validation 

• Limited Real-

world Testing 

• Performance 

Variability 

 

[92] 2020 
- ROS 

- Telobot 

Deep neural 

network 
ORBSLAM MAS-DQN 

• Scalable Design 

• Realistic 

Simulation 

• Lack of 

Distributed 

Alternative 

• Dependence on 

Centralized 

Coordination 
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[93] 2022 

- Gazebo 
- ROS 

- ROBOTIS 

TurtleBot3-
Burger 

Deep Neural 
Network 

Lightweight 

Passive 

SLAM 

Partially Observable 

Markov Decision 

Process (POMDP) 

• Focus on Map 

Quality and 

Robustness 

• Efficiency 

through 

Dimensionality 

Reduction 

• Flexible and 

Lightweight 
Approach 

• Limited Physical 

World 

Validation 

• Dependency on 

Reward Function 

Design 

 

VI. CHALLENGES IN APPLYING RL TO SLAM 

 

In the rapidly evolving field of AI, RL has garnered 

significant attention for its potential to empower autonomous 

systems with the ability to learn and adapt through interaction 

with their environment. Despite its promising outlook, 

deploying RL in real-world applications faces considerable 

challenges [94]. These challenges posing unique hurdles that 

must be navigated to harness the full potential of RL 

technologies. Some of these limitations including: 

High Computational Demands: RL models, especially 

those that extensively utilize deep learning frameworks, 

frequently require significant computational resources to 

perform optimally. The necessity for high processing power 

and substantial memory can pose a critical limitation in 

contexts where rapid decision-making is essential [95]. 

Consequently, attaining real-time performance with these 

models on edge devices, such as robots or drones, is 

particularly challenging. Such devices often possess limited 

processing capabilities, which can impede the 

implementation of sophisticated RL algorithms, even though 

these algorithms could potentially enhance the devices' 

autonomy and operational effectiveness [96]. 

Safety and Reliability: In the context of RL-based SLAM, 

guaranteeing safe exploration and robust decision-making is 

of paramount importance, especially for autonomous vehicles 

navigating through dynamic and complex urban 

environments. This necessity arises from the intricate nature 

of urban streets, which present a variety of unpredictable 

challenges such as varying traffic patterns, pedestrian 

movement, and environmental changes [97]. These factors 

can impact a vehicle's ability to accurately map and 

understand its surroundings for optimal path planning and 

hazard avoidance [95]. 

Generalization Issues: RL models often face challenges 

in adapting to diverse environmental conditions due to 

significant discrepancies between the controlled settings in 

which they are typically trained and the complex, 

unstructured nature of real-world scenarios. This limitation 

arises because the assumptions and constraints inherent in 

simulation environments fail to capture the full spectrum of 

variability and unpredictability present in natural settings. As 

a result, the application of RL models outside their training 

domains frequently leads to suboptimal performance, 

highlighting a critical gap in their generalization capabilities 

[96]. 

High-dimensional state and action spaces: The state 

space encapsulates all possible states in the environment. 

This encompasses the intricate array of sensor data vital for 

SLAM operations. Meanwhile, the action space delineates 

the spectrum of feasible actions available to the agent [98]. 

Within SLAM, these actions pertain to the movements, 

encompassing maneuvers like turning and accelerating. 

SLAM systems operate amidst a milieu of high-dimensional 

sensor data, ranging from intricate camera images to intricate 

LiDAR point clouds, essential for navigating complex 

environments [99]. However, the efficacy of RL agents in 

handling such expansive input spaces is challenged by the 

escalating computational complexity inherent in high-

dimensional realms [30]. 

Sample efficiency: The ability of a RL algorithm to learn 

from a small number of interactions (samples) with the 

environment is known as sample efficiency [100]. Sample 

efficiency is important since real-world data collecting for 

autonomous vehicles in SLAM can be costly and time-

consuming (e.g., using laser sensors) [101]. 

Sensor/actuator delays: Sensor/actuator delays epitomize 

the temporal gap between perceiving an event and enacting a 

response. This latency, inherent to the system, poses a critical 

challenge. In these domains, the journey from sensing to 

decision-making to action execution encompasses finite 

intervals, demanding precise synchronization [102]. RL 

algorithms must grapple with these delays to orchestrate 

timely and precise responses, ensuring seamless navigation 

and operation [103]. Within the intricate landscape of SLAM, 

this temporal precision assumes paramount importance, since 

the essence of success lies in the precision of real-time 

processing. This crucial element not only upholds but 

enhances the quality of localization and mapping, but also 

ensures a seamless fusion of navigational prowess [30]. 

VII. FUTURE DIRECTIONS 

In future research on the application of RL in SLAM, several 

key areas hold promise for advancing the state of the art:  

• Adaptive sensor fusion: Combining data from 

various sensors, such as cameras, LiDAR, and 

Inertial Measurement Units (IMUs), is crucial for 

achieving robust SLAM. Future work could focus on 

developing RL agents capable of learning how to 

adaptively fuse information from these different 

modalities. By doing so, the overall performance and 

reliability of SLAM systems could be significantly 

enhanced, particularly in diverse and dynamic 

environments. 

• Self-Supervised learning and data augmentation: The 

integration of Self-Supervised Learning (SSL) and 

data augmentation techniques offers substantial 

potential for improving RL-based SLAM, especially 
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in MRAD applications. Leveraging large amounts of 

unlabeled data and generating diverse training 

samples can enhance the robustness and 

generalization capabilities of SLAM systems. Future 

research should explore innovative SSL strategies 

and data augmentation methods to maximize the 

efficacy of RL in SLAM. 

• Knowledge transfer across environments: For RL 

agents to be truly effective in real-world applications, 

they must be able to transfer knowledge across 

different maps or environments. Future studies 

should investigate techniques such as domain 

adaptation and meta-learning to facilitate better 

generalization of RL-based SLAM systems. These 

approaches can enable RL agents to apply learned 

knowledge from one environment to another, thereby 

improving their adaptability and performance in 

previously unseen settings. 

By addressing these areas, future research can contribute 

to the development of more robust, efficient, and versatile 

RL-based SLAM systems, paving the way for advancements 

in the navigation of MRAD. 

VIII. CONCLUSION 

SLAM is a technique used in robotics and autonomous 

vehicles to create a map of an unknown environment while 

simultaneously keeping track of an agent's location within 

that environment. It is a key technology for enabling MRAD 

to navigate and operate in real-world settings. SLAM 

involves the use of various sensors such as cameras, LiDAR, 

and odometry to gather information about the surrounding 

environment and then process this data to construct a map and 

estimate the agent's pose. In this survey, applications that 

have used RL in SLAM were investigated. According to the 

searches, the most use of RL in SLAM was in path planning, 

loop closure detection, environment exploration, obstacle 

detection, and Active SLAM. In these problems, RL helps the 

agent to design an intelligent map and facilitate navigation. 

SLAM methods can be effectively applied in MRAD, but the 

sensors, and environmental factors may need to be tailored to 

the respective application domain. 
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